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STOCHASTIC MODELS OF PARTICLE MOTION
IN A TURBULENT FLOW AND THEIR APPLICATION
FOR CALCULATING INTERNAL FLOWS
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This paper considers issues connected with the construction and numerical realization of stochastic models of
motion and scattering of condensed impurity particles in a turbulent flow based on the integration of a
Langevin-type equation. The proposed model is used to calculate the turbulent flow of a low-concentration
gas suspension in a channel with permeable walls. Calculations are performed for various values of the in-
jection rate, sizes of particles, and the conditions of their introduction into the channel.

Introduction. To describe and forecast the properties of gas-disperse systems, the following approaches are
used: kinetic, continual, and trajectory ones. Practical realization of a particular approach is dictated by the range of
applicability and the possibility of forecasting various characteristics of the flow [1]. The kinetic approach finds appli-
cation in constructing and justifying mathematical models of gas-dispersion media, in particular, for obtaining transfer
equations of moments of fluctuating parameters of the gaseous and dispersed phases [2]. In solving specific problems,
kinetic models are used comparatively seldom because of the difficulty of solving corresponding equations. In the con-
tinual approach, one considers the interpenetrative motion of several interacting continua connected with the gas and
particles, which is described by the continuum mechanics equations in Euler variables. To close Reynolds-averaged
equations, equations of the second moments of fluctuating parameters of the gaseous and dispersed phases are used.
Correlation moments connected with the dispersed phase are found either on the basis of the probability density func-
tion method [2] or by the space-time averaging method [3]. In the trajectory approach, impurity motions are written in
Lagrangian variables and integrated along the trajectories of individual particles in the known (precalculated) gas-dy-
namic field. Compared to the continual method, the trajectory approach requires simple and physically more correct
closing assumptions, which makes it possible to elucidate the flow structure with a high degree of detailing. However,
to simulate the impurity motion, a fairly representative ensemble of particles is needed [4].

Depending on whether or not the influence of velocity fluctuations of the carrier turbulent flow on the particle
motion is taken into account, one distinguishes two variants of the trajectory approach [1, 4]: the deterministic and the
stochastic ones. In the first variant, the interaction of a particle with turbulent moles is excluded from the considera-
tion, which holds only for rather inertial particles. The position of the probe particle at the initial instant of time fully
determines its further evolution. In the second variant, the decomposition of the velocity field of the carrier flow into
a mean and a random component is used. The mean component is calculated on the basis of Reynolds-averaged
Navier–Stokes equations closed by means of a particular turbulence model, direct numerical simulation, or modeling of
large vortices. The random component is determined by the Monte Carlo method. In practice, various approaches to
the numerical realization of the computational procedure for the random velocity component are used.

In the model of the turbulent mole lifetime, the turbulence field is modeled by a combination of spherical
vortices, each of which is characterized by the velocity, size, and lifetime depending on the local characteristics of tur-
bulence [1, 5]. The turbulent mole loses and acquires individuality stepwise, which leads to the appearance of fluctua-
tions of the turbulent flow parameters. As a criterion of the random velocity component generation, the lowest value
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of the vortex lifetime and the particle-vortex interaction time is usually chosen [5]. Comparison of different approaches
shows that the realization of the stochastic model appears to be insensitive to the choice of the generation criterion of
a new fluctuation of the carrier flow velocity [1]. The disadvantage of the model and its different modifications is that
the pulsation fluid velocity field is not continuous, and the time dependence of the correlation coefficient is linear [1].
In a number of models, it is assumed that the time internal between sequential changes in the carrier flow velocity
(vortex lifetime) is a random value distributed by the Poisson law [6].

The present paper considers another approach where the calculation of the fluctuation velocity component is
based on the integration of a stochastic equation of the Langevin type [7]. The Langevin equation is used to describe
either only the carrier flow [8, 9] or only the dispersed phase [10] or both of them [11]. The features of the formu-
lation and realization of various stochastic models of impurity motion and scattering are given and their advantages
and disadvantages are noted. The possibilities of the approach are demonstrated with the example of calculating the
turbulent flow of a low-concentration gas suspension in a blow-distributed channel (the back influence of particles is
ignored). Calculations are performed for various blow velocities and conditions of introduction of particles into the
channel. Comparison of the results obtained on the basis of the deterministic and stochastic models is made.

Simulation of the Carrier Phase. The realization of the stochastic model requires calculations of both the
medium and the pulsation velocity fields of the carrier flow. To this end, various approaches differing in the degree
of detailing of the flow pattern and the difficulty of realization are used [1]. The approaches considered in [1] were
used successfully to simulate flows of different classes, including the calculation of the impurity motion in an inhomo-
geneous turbulence field [12]. The current approaches to the turbulence simulation, such as simulation of large vortices
or direct numerical simulation, permit weakening the dependence of calculation results on semiempirical data.

For simplicity, consider a one-dimensional case assuming su′t = 0 and considering the energy spectrum of
turbulence and the correlation function to be given. They are related by the relation 

R (x) = su (x) u (x + r)t = ∫ 
−∞

+∞

E (κ) exp (2πiκx) dκ .

To reproduce the velocity field of the carrier flow, one uses in the trajectory calculations of probe particles methods
based on the statistical processing of data obtained as a result of solving filtered or complete Navier–Stokes equations.
Such methods can be broken down into several groups.

1. The velocity is expressed as the Fourier integral

u (x) = ∫ 
0

+∞

E
1 ⁄ 2 (κ) cos (2πκx) dw1 (κ) + ∫ 

0

+∞

E
1 ⁄ 2 (κ) sin (2πκx) dw2 (κ) .

White noise is a random process with a zero mathematical expectation and a correlation function in the form of a
delta function.

2. The velocity is given as the convolution

u (x) = ∫ 
−∞

+∞

G (x − r) dw (r) ,   G (x) = ∫ 
−∞

+∞

E
1 ⁄ 2 (κ) cos (2πκx) dκ .

3. To simulate a nonstationary velocity field, the wavelet (short wave packet) theory is used. The velocity is
represented as the basis expansion

u (x) =  ∑ 

i,j=−∞

+∞

 Gi (x)
∗
 ϕij (x) ξij ,
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where i, j = 0, %1, %2, and 


ξij



−∞

+∞
 is a sequence of independent random variables distributed by the normal law.

The orthonormal basis is of the form

ϕij (x) = 2
i ⁄ 2ϕ (2i

x − j) .

Substitution yields

u (x) = ∑ 

i=−∞

+∞

ui (2
i
x) ,   ui (x) = ∑ 

j=−∞

+∞

fi (x −j) ξij .

Here

fi (x) = Gi (x)
∗
 ϕ (x) ;   Gi (x) = 2

−i ⁄ 2 G (2−i
x) ,

and ϕ(x) is a Mayer wavelet.
Dispersed Phase Simulation. The equations describing the translational motion of a spherical probe particle

are of the form

drp

dt
 = vp , (1)

dvp

dt
 = 

3Cdρ
8ρprp

 v − vp (v − vp) . (2)

To calculate the resistance coefficient, the relation

Cd = 
24

Rep
 fd (Rep) .

is used. The function fd takes into account the correction to the Stokes resistance law for the particle inertia. The
Reynolds number for the motion of the particle and the carrier gas is found by the formula

Rep = 
2rpρ v − vp

µ
 .

The dynamic relaxation time of the particle is calculated by the relation

τp = 
8

3
 
ρp

ρ
 

rp

Cd v − vp
 .

Equations (1) and (2) are integrated along the path of an individual particle and require specification of only
the initial conditions — the coordinates and the particle velocity at the instant of time t = 0. The carrier gas velocity
in Eq. (2) represents a random function of the spatial coordinates and time. The carrier flow turbulence is taken into
account by introducing random velocity fluctuations into (2). The carrier gas velocity is given as a sum of the aver-
aged component svt and the random variable v′. The mean component is thought to be given (precalculated). To cal-
culate the fluctuation component, a Langevin-type equation is used. Depending on the statement of the problem,
different forms of writing the Langevin equation are used.

Inertialess Particle. To simulate the motion of an inertialess particle in a homogeneous isotropic turbulence
field, the following stochastic equation is used [7]:
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dv = v (t + dt) − v (t) = − 
v

TL
 dt + σ 



2
TL





1 ⁄ 2
 dw .

(3)

Here dw is a Wiener random process (white noise), for which sdwt = 0, s(dw)2
t = dt, sdwi(t)dwj(t)t = δijdt. The

velocity fluctuations are related to energy-containing vortices having a time scale TL. The velocity dispersion is ob-
tained from the relation

�(dv)2� = �[v (t + dt) − v (t)]2
� = 

2σ2

TL
 dt .

In the inertial, interval, the dispersion represents a linear function of time s(dv)2
t = CKεdt. Therefore, TL = 4k/(3CKε)

= k ⁄ ε, which serves as a physical basis of Eq. (3) used to simulate the diffusion of a fluid particle from a point
source [9], the motion of inertialess particles in a turbulent flow [7, 10], and the passage to kinetic equations [13].

The multidimensional Markovian process, whose components satisfy the Langevin equation (3), can be com-
pared to the Fokker–Planck equation for the probability density function. The solution of the latter shows that the
mean-square Stokes particle displacement in the time interval dt is proportional to this interval:

�(dr)2� = 2Ddt .

To take into account the turbulence inhomogeneity, additional terms are added to Eq. (3) to provide a nonzero
root-mean-square value of the random force (moments up to the sixth order are taken into account), and a mean pres-
sure gradient is introduced [8]. However, third- and higher-order-moments play a secondary role compared to the sec-
ond moments [14].

The model of [15] uses the assumption about the gradient character of the turbulent transfer, and the iner-
tialess particle displacement is modelled on the basis of the equation

dr = 
1
ρ

 ∇µtdt + 




2µt

ρ




1 ⁄ 2

 dw .

The turbulent viscosity is calculated by the Kolmogorov–Prandtl formula.
To take into account the correlation of velocities at different points of the space at various instants of time,

Eq. (3) is given in a modified form. In the case of homogeneous turbulence, the velocity at time tn+1 is related to the
velocity at time tn by the relation [16, 17]

vi
n+1

 = Rii (t, x) vi
n
 + σi 


1 − Rii

2
 (t, x)

1 ⁄ 2
 ξi (t) .

(4)

In an inhomogeneous turbulence field, Eq. (4) is written in the following form [18]:

vi
n+1

 = Rii (t, x) vi
n
 + σi 


1 − Rii

2
 (t, x)

1 ⁄ 2
 ξi (t) + 1 − Rii (t, x) TLii 

∂σ3

∂x3
 δi3 .

In the special case of the step correlation function used in [19], Eq. (4) takes the form

vi
n+1

 = − 
∆t

TLii
 vi

n
 + σi 




1 − 




1 − 

∆t
TLii





 2



 1 ⁄ 2

 ξi (t) .

The space-time correlation function is given as a product of the Lagrange and Euler correlations [20]:

Rii (t, x) = RLii (t) REii (x) .
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In practice, various forms of the Lagrange correlation function are used [20], in particular, for q > 0

RLii (t) = exp 

− 

t

(q2
 + 1) TLii




 cos 



qt

(q2
 + 1) TLii




 ,  RLii (t) = exp 


− 

t

TLii




 .

The Euler correlation function is usually expressed in terms of the longitudinal f(r) and transverse g(r) corre-
lation coefficients by means of the von Ka′rma′n relation [20]

REii (r) = [f (r) − g (r)] 
rirj

r
2  + g (r) δij .

These correlations coefficients for a homogeneous isotropic turbulence have the form

f (r) = exp 

− 

r
LExx




 ,   g (r) = 


1 − 

r
2LEyy




 exp 


− 

r
LEyy




 .

The integral length scales are obtained from the relations LExx = 1.1TLσ, LEyy = LEzz = 0.5LExx.
Inertial Particle. In the model of [7], the pulsed motion of a particle is modeled on the basis of the stochas-

tic equation

dv = − 
vp

τp
 dt + σp 





2

τp





1 ⁄ 2

 dw ,

which coincides formally with (3) but is characterized by different time scales. In a homogeneous isotropic turbulence,
the velocity dispersions of the particle and the carrier flow are related by the relation [20]

σp
2

σ2 = 
1

1 + ατp
 ⁄ TL

 ,

where α C1.0. For a homogeneous isotropic turbulence, σ2 = 2k ⁄ 3 and TL = βk ⁄ ε, where β = 0.11–0.60. In the field
of mass forces, the relative motion of the particle and the fluid element are taken into account [21].

In discrete form, the Lagrange equation is written as

v
n+1

 = av
n
 + bξξn

 , (5)

where ξn 8 N(0, 1). Multiplying relation (5) by vn, vn+1 and making averaging, we obtain

a = 
�v

n+1
v

n+1
�

�v
n
v

n
�

 = RL (t) ,   b2
 = �v

n+1
v

n+1
� − a

2
 �v

n
v

n
� = σ2

 1 − a
2
 .

Here σ2 = svnvn
t, ξn(dt)1 ⁄ 2 → dw at dt → 0, dt = tn+1 − tn. When the exponential correlation function is used, the co-

efficients acquire the following values: a = exp (−∆t ⁄ TL), b = σ(1 − a2)1 ⁄ 2. At τp → 0 (light particles) the correlation
function is Lagrangian, and at τp → ∞ (heavy particles) it is Eulerian.

Variants of Lagrange Models. Consider a condensed particle P and a fluid particle F that coincide at some
instant of time tn (Fig. 1). Because of the inertia, their positions differ at the time tn+1. To calculate the velocity of
the fluid particle at the time tn+1, either the one-step (Lagrange) or the two-step (Lagrange–Euler) approaches are used.

One-step approach. In the model of [22, 23], the fluid particle velocity at the instant of time tn+1 is expressed
in terms of the velocity of this same particle at the instant of time tn. The obtained value is used in the equations de-
scribing the motion of the condensed particle. The fluid particle velocity at the time tn+1 is given in the form
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vL
n+1

 = avL
n
 + bξξn

 .

The coefficients a and b are described by the same relations as for Eq. (5). Instead of the time scale TL, the scale
TL
∗  is used. It is obtained with the aid of the linear interpolation

TL
∗
 = 

ω
TL

 + 
1 − ω

TE
 ,

where ω = σp
2 ⁄ σ2. From the above relation it follows that TL

∗  → TL at τp → 0 and TL
∗  → TE at τp → ∞.

In [11], the time scale is calculated by the relation

TL
∗
 = TL 




1 + 

γC

(1 + TL
 ⁄ τp)

1 ⁄ 2




−1

 ,

where C = (8π)1 ⁄ 2; γ = TL
 ⁄ TE. However, such an approach leads to incorrect limiting relations. In particular, at

τp
 ⁄ TL >> 1 (heavy particles) we obtain

TL
∗
 = 

TL

1 + γC
 = 0.4TL .

Two-step approach. This approach consists of the Lagrange step, where the fluid particle velocity at the time
tn+1 is calculated from the velocity of the same particle at the time tn, and the following Euler step. At the Euler step
the fluid particle velocity at the point where the condensed particle is situated (see Fig. 1) is generated from the ve-
locity at the time tn+1 of the fluid particle situated at distance r from the solid particle (this velocity is calculated at
the Lagrange step).

The Lagrange (time) step is described by the relation

vL
n+1

 = aLvL
n
 + bLξξL

n
 . (6)

At the Euler (spatial) step the time variables are substituted into their spatial equivalents [24]:

vE
n+1

 = aEvL
n+1

 + bEξξE
n+1

 . (7)

Fig. 1. To the calculation of the carrier turbulent flow velocity at the instant
of time tn+1.
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Here ξL
n  8 N(0, 1); ξL

n+1 8 N(0, 1). The coefficients aL and bL depend on the form of the Lagrange correlation function,
and the coefficients aE and bE are determined by the form of the Euler correlation function.

The distance between the fluid and the solid particles at the time tn+1 is expressed in terms of their instanta-
neous velocities r = vn+1 − vp

n+1
∆t, where ∆t = tn+1 − tn. Because of the spatial correlation anisotropy, the calculated

relations are written in the local coordinate system whose x-axis is directed from the fluid particle to the solid one.
For the Lagrange step at ∆t → 0, Eq. (6) goes over into the Langevin-type equation (3), which has heuristic

bases [11]. For the Euler (spatial) step, from (7) we obtain

dv = − 
v

LE
 dx + σ 



2
TE





1 ⁄ 2
 dw . (8)

The velocity difference at the distance r is ∆v = v(x + r) − v(x). Taking into account that the velocity fluctuations obey
the normal probability distribution, we obtain

s∆vt = 0 ,   �(∆v)2� = 2σ2
 

r
LE

 ,   �(∆v)3� = 0 .

On the other hand, the Kolmogorov theory gives the following relations [20]:

s∆vt = 0 ,   �(∆v)2� = (εr)2
 ⁄ 3 ,   �(∆v)3� = εr .

Consequently, Eq. (8) contradicts the Kolmogorov law in the inertial range. Moreover, Eq. (8) does not admit energy
transfer from large vortices to small ones. Unlike Eq. (6) used at the Lagrange step, Eq. (7), which describes the Euler
step, has a less sound theoretical basis.

In the model of [22], a finite correlation length Λ D LE was introduced. The position of the fluid and solid
particles is tracked until the distance between them becomes equal Λ, since the velocities of two turbulent vortices at
a distance larger than LE are noncorrelated. At r > Λ we assume RE(r) = 0. At r < Λ the exponential form of the Euler
correlation function is used. In [11], it was shown that such an approach is unsatisfactory for small particles.

Modified approach. In the model of [11], a modified representation of the Euler step described by relation (7)
was introduced. The distance between the fluid and the solid particles is calculated by their mean relative velocity: r
= svn+1

t − svp
n+1

t∆t. The velocities at the Lagrange and Euler steps are determined by the following relations:

vL
n+1

 = aLv
n
 + bLξξL

n
 ,     vE

n+1
 = aEvL

n+1
 + bEξξE

n+1
 .

Using the exponential approximation of the Lagrange and Euler correlation coefficients, we obtain

Fig. 2. Position of the condensed particle relative to the fluid particle at the
instants of time tn and tn+1.
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aL = exp 



− 

∆t
TL




 ,   bL = σ 1 − aL

2


1 ⁄ 2
 ,   ξξL

n
 2 N (0, 1) ;

aE = exp 

− 

r
LE




 ,   bE = σ 1 − aE

2


1 ⁄ 2
 ,   ξξE

n+1
 2 N (0, 1) .

The fluid velocity at the point where the solid particle resides at the instant of time tn+1 is calculated as

v
n+1

 = a1vL
n+1

 + a2vE
n+1

 + bξξn
 . (9)

The coefficients a1, a2, and b in Eq. (9) depend on the ratio σp
 ⁄ σ and the form of the time correlation function. For

large particles, the point Pn+1 is closer to the point F n, and for small particles it is closer to F n+1. Particles of me-
dium sizes are positioned between the points F n and F n+1 (Fig. 2).

Unlike the models of [16–18], where ∆t D 0.2TL, the time integration step is chosen from the condition ∆t =
min 



∆t1, ∆t2, ∆t3




, where ∆t1 is the time required for the particle to cross the control volume of the Euler net; ∆t2 =

TL; ∆t3 = τp; α D 0.5.
Results of the Calculations. Let us align the x-axis of the rectangular Cartesian coordinate system with the

lower wall of the channel, and the y- and z-axes with its cross-section (Fig. 3). From the  upper wall of the channel
blowing with velocity vw is carried out. The lower wall is assumed to be impermeable. The channel width and length
are chosen to be equal to h = 0.01 and l = 0.30 m. As a working medium, air is taken.

To calculate the flow, the large eddy simulation method [25] is used. The equations characterizing the flow
are written in terms of the space-filtered quantities and coincide formally with nonstationary Reynolds equations. As a
model of the subnet eddy viscosity, the Smagorinskii model is used. To obtain molecular viscosity values depending
on the temperature, the Sutherland law is used. The filter width is related to the size of the computational mesh width.

At the initial instant of time the velocity component distributions that take place in the vortex flow of a non-
viscous liquid are given [26]. The velocity component in the direction of the z-axis is assumed to be equal to zero.
On the upper wall, boundary conditions of normal blow with velocity vw, and on the lower wall adhesion and nonper-
colation conditions, are formed. The left end wall of the channel is assumed to be impermeable. At the boundary
through which the gas leaves the calculated region nonreflective conditions are set. In the direction of the z-axis, pe-
riodic boundary conditions (flow repetition conditions) are specified. The blow velocity varies with time by the Gauss
law but remains constant in the space. Particles are injected into the channel from the upper wall along the normal to
the surface with a velocity equal to the blow velocity.

Discretization of the equations is carried out with the use of the control volume method on a nonuniform
mesh and finite-difference schemes with a high time and space resolution [27].

Calculations were performed on a 200 × 100 × 50 mesh with nodes crowding together towards the front bot-
tom (along the x-coordinate) and the impermeable wall (along the y-coordinate) of the channel according to the geo-
metrical progression law. The mesh width on the z-coordinate was assumed to be constant. The time step was ∆t =
1.2⋅10−5 sec. To obtain a statistically stationary flow pattern, 50,000 time steps were made.

To describe the impurity motion and scattering on the basis of the statistical model, it is necessary to calcu-
late the trajectories of a large number of particles. To solve the Cauchy problem, we used methods that made it pos-

Fig. 3. Coordinate system for the channel flow with injection.
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sible to resolve in the solution the fast and slowly decaying components [28]. To supply the carrier gas parameters at
the points lying on the particle trajectory, the bilinear interpolation method was used. The integration step along each
trajectory was limited by the time and space scales of turbulence. In the calculations, from 1000 to 10,000 trajectories
of probe particles depending on their size were modeled.

The distributions of the longitudinal velocity component over the channel cross-section are given in Fig. 4a.
The velocity distributions correspond to different velocities of injection from the upper wall of the channel: vw = 0.1
(1); 0.55 (2); 1 (3); 2.75 (4), and 5 m/sec (5). Curve 6 presents the data of the physical experiment of [29]; curve 7
presents the results of the calculation by the k–ε turbulence model at vw = 1 m/sec (conditions for curve (3); curve 8
corresponds to the cosine longitudinal velocity profile taking place in a vortex flow of a nonviscous incompressible
liquid; curve 9 shows the velocity profile of a laminar flow of a viscous incompressible liquid at Re = 103 [26]. As
the Reynolds number increases, the maximum of the longitudinal velocity component approaches the impermeable sur-
face, near which a viscous flow zone similar to the boundary layer on a flat plate develops.

A specific feature of the flow in a channel with injection is the presence of a negative pressure gradient,
which strongly influences the mechanism and intensity of turbulent transfer. The calculated distributions of the
Reynolds stress tensor components in the channel cross-section are shown in Fig. 4b–d. An increase in the level of
turbulent velocity fluctuations is observed in the region of a strong shear at a distance from the permeable wall of the
channel where the fluid particles moving normally to the surface have to turn around in the narrow near-surface zone.
The results of the calculations are in fair agreement with the data of the physical experiment of [29], excepting the
wall-adjacent zones of the flow where the calculation gives a higher turbulence intensity [30].

The results of calculation of the motion and scattering of aluminum oxide particles (rp = 5–10 µm) for vari-
ous particle sizes (Stokes numbers) are shown in Fig. 5. At the initial instant of time the particle was on the upper
wall of the channel. The calculations were made beginning from the point xp0 = 3 with a step ∆x = 0. The calculation

Fig. 4. Distributions of the longitudinal velocity component (a), normal
Reynolds stresses su′u′t (b) and sv′v′t (c), and shear Reynolds stresses su′v′t
(d) over the channel cross-section at x ⁄ h = 30.
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was finished when the particle either left the calculated region (at x ⁄ h > 30) or fell onto the lower wall of the channel
(at y = 0).

The degree of involvement of a particle in pulsation motion is determined by the relation between the dy-
namic relaxation time of the particle and the characteristic time scale of turbulence. The inhomogeneity of the carrier
phase turbulence field for particles of small fractions leads to the appearance of turbulent migration of the particle (tur-
bophoretic force) in the direction of decreasing pulsation energies of the gas.

For particles of large fractions (rp = 30–50 µm), velocity fluctuations produce no significant effect on the im-
purity motion throughout the region of flow development because of the inertia of such particles (Fig. 5a, b). Weak
migration of particles towards decreasing pulsation energies of the gas is observed only for particles injected into the
channel at a considerable distance from its left end (at xp0 > 9). Small particles (rp D 5–15 µm) are scattered rather
strongly (Fig. 5c, d). The degree of scattering (dispersion of particle displacement) is the higher the smaller the parti-
cle size and the farther from the left boundary of the calculated region it is injected into the channel (the kinetic tur-
bulence energy and the rms velocity of the carrier flow vary along the x-coordinate according to a law close to the
parabolic one).

The results of the calculations make it possible to determine the time correlation function (correlation coeffi-
cient) of a condensed particle along its trajectory. In particular, the definition of the correlation function is given by
the relation

Rxx (t) = 
�up (0) up (t)�

�up
2
 (0)�1 ⁄ 2 �up

2
 (t)�1 ⁄ 2

 .

Averaging over the ensemble of random realizations at the instant of time t = t0 + i∆t, we obtain

R (t0 + i∆t) = 
1

Np
 ∑ 

i

up (t0) up (t0 + i∆t)

�up
2
 (t0)�

1 ⁄ 2 �up
2
 (t0 + i∆t)�1 ⁄ 2

 .

Fig. 5. Particle trajectories in the channel at Stk = 1.0 (a), 0.75 (b), 0.5 (c),
0.25 (d).
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The behavior of the longitudinal and transverse correlation coefficients of the particle is shown in Fig. 6 for
particles of different sizes (compared to the distribution calculated for the carrier flow).

The correlation function of small particles practically follows the distribution obtained for the carrier flow
(small particles are involved in the pulsation motion of the carrier flow and move along the streamlines) and are well
described by the exponential dependence often postulated in calculations. At the same time the correlation coefficient
of large particles differs in quality from the distribution that takes place for the carrier flow (large particles deviate
from the streamlines, largely manifesting their inertia). The transverse correlation coefficient therewith acquires small
negative values.

Conclusions. The features of the formulation and realization of various stochastic models of motion and scat-
tering of condensed impurity particles in a turbulent flow have been considered. The possibilities of the stochastic ap-
proach based on the integration of a Langevin-type equation have been demonstrated  with the example of the
calculation of the turbulent flow of a gas suspension in a channel with injection for various values of the injection rate
and the sizes of particles and conditions of their introduction into the channel. The results obtained on its basis show
that velocity fluctuations of the carrier turbulent flow strongly influence the motion and scattering of dispersive impu-
rity, and the proposed model leads to satisfactory results that agree with the data of numerical and physical experi-
ments.

The application of the method of simulation of large vortices for describing the velocity field of the carrier
turbulent flow makes it possible to upgrade the universality of the method, as well as to avoid the application of
semiempirical relations for calculating the statistical characteristics of turbulence and the assumption of local inhomo-
geneity and isotropy of the turbulence field.

NOTATION

a, b, coefficients in a discrete Langevin equation; C, coefficient; D, diffusion coefficient, m2/sec; E, spectral
density of the kinetic turbulence energy; f, g, functions; G, convolution kernel; i, complex unit; k, kinetic energy of
turbulence, m2/sec2; l, channel length, m; L, linear scale, m; N(0, 1), standard normal probability distribution law; Np,
number of particles; q, constant; r, radius, m; r, radius vector, m; R, correlation coefficient; Re, Reynolds number; t,
time, sec; T, time scale, sec; u, v, velocity components, m/sec; v, velocity vector, m/sec; w, Wiener random process;
x, y, z, spatial coordinates, m; α, β, γ, coefficients; δ, delta function; ε, turbulent energy dissipation rate, m2/sec3; κ,
wave number, 1/m; Λ, correlation length, m; µ, dynamic viscosity, kg/(m⋅sec); ξξ , vector of random numbers that are
chosen from the normal probability distribution with zero mathematical expectation and unit dispersion; ρ, density,
kg/m3; σ, rms value of velocity fluctuation, m/sec; τ, relaxation time, sec; ϕ, basics element; ω, velocity dispersion
ratio between the particle and the carrier flow. Subscripts: d, particle drag; E, Euler characteristics of turbulence; i, j,
summation indices; K, characteristics of turbulence in the inertial interval obeying the Kolmogorov law; L, Lagrange

Fig. 6. Longitudinal (1–3) and transverse (4–6) time correlation functions of
the carrier flow and the condenser particle at Stk = 0.1 (2, 3) and Stk = 1, 2
(5, 6); curves 1 and 4 correspond to the carrier flow.
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characteristics of turbulence; m, maximum; p, particle; t, turbulent; w, wall; 0, initial instant of time; ′, fluctuations of
parameters; ∗, convolution.
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